Determining the Effectiveness of Drugs using EC50 and MIC Assays

Sara Knapp, Dr. Rachael Baker and Dr. Amy Wilstermann
Calvin University, Grand Rapids, Michigan

A methodology for determining potency of modified antibiotics

Background
- Antibiotic resistance comes from bacterial mutations in the antibiotic binding site (which prevents antibiotic binding).
- These new antibiotics target both DNA Gyrase and DNA Topoisomerase IV (fluoroquinolones).
- This improves efficacy because if one binding site is mutated, the other is still available.
- This makes it harder for bacteria to form resistance against the drug.

Methods
1) **Gyrase Assay**
 - Tests what the drug does to the DNA Gyrase inside the bacteria.
 - Gyrase supercoils DNA – without which the DNA can’t form chromosomes (must replicate).
2) **Minimum Inhibitory Concentration (MIC) Assay**
 - Tests whether the drug can penetrate the bacteria’s thick cell wall to disable DNA Gyrase.

Results/Data
- Standard deviations of EC50s and MICs are used to quantify the effectiveness of the compounds.

Conclusions/Outcomes/Future
- Conclusion: effect of structure on binding affinity and ability to get into the bacteria (see Results).
- Complete a new set of assays with the best compounds:
 - TopoIV Assay: tests that the drugs are dual-targeting.
 - Human Topo II Assay: tests that the drugs won’t affect human Topoisomerase II (only bacterial).
 - Resistance Testing: tests the efficacy of the compounds against bacteria that have resistance to fluoroquinolones.

<table>
<thead>
<tr>
<th>Compound Identifier</th>
<th>Avg # of SD’s from Mean</th>
<th>Ring Structure</th>
<th>R Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLB-XII-140</td>
<td>0.32</td>
<td>Yellow</td>
<td></td>
</tr>
<tr>
<td>ETM-I-11</td>
<td>0.64</td>
<td>Red</td>
<td></td>
</tr>
<tr>
<td>MRB-I-3</td>
<td>0.56</td>
<td>Orange</td>
<td></td>
</tr>
<tr>
<td>AKE-I-39</td>
<td>0.55</td>
<td>Green</td>
<td></td>
</tr>
<tr>
<td>ETM-I-10</td>
<td>0.03</td>
<td>Black</td>
<td></td>
</tr>
<tr>
<td>RLB-XIV-15</td>
<td>0.08</td>
<td>Blue</td>
<td></td>
</tr>
<tr>
<td>RLB-XII-149</td>
<td>0.62</td>
<td>Yellow</td>
<td></td>
</tr>
</tbody>
</table>

Examples
- **Gyrase Assay with AKE-I-39, AKE-I-51, & ETM-I-15**: Yields the Effective Concentration needed to kill 50% of the bacteria (EC50). (LM = Linear Marker; SCM = Supercoiled Marker)
- **MIC Assay with RLB-XIV-15 in K. pneumoniae**: Yields the Minimum Inhibitory Concentration needed to prevent bacterial growth.

References and Acknowledgments

Special thanks to: Dr. Michael Barbachyn and Luke Burroughs for providing resources and compounds; Dr. Rachael Baker and Dr. Amy Wilstermann for their guidance, both personally and professionally.