Chk1 target validation in recurrent mutant p53 pediatric tumors

Jeremiah D. Shultz, Barbara J. Bailey, Pankita H. Pandya, Jixin Ding, Kevin Van der Jeught, M. Reza Saadatzadeh, Xiongbin Lu, and Karen E. Pollok
Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN

INTRODUCTION

Based on genomic data from the Pediatric Precision Genomics Program at Riley Hospital as well as published studies, many recurrent pediatric solid tumors express mutant forms of the tumor suppressor protein p53, p53’s central role in cell cycle arrest and apoptotic pathways has been well studied. Glioblastoma multiforme (GBM) and Ewing’s sarcoma are two cancers with low 5-year survival rates in recurrent pediatric populations. GBM is the most aggressive type of brain tumor, with survival rates that range from 15-30% in pediatrics. Ewing’s is a rare cancer of the bone and the soft tissue around the bones with a 70% survival rate for localized tumors and a 30% survival rate for metastatic tumors.

In our laboratory, in vitro and in vivo studies in mutant p53 GBM and Ewing’s sarcoma have demonstrated that the pharmacological inhibition of checkpoint kinase 1 (Chk1) significantly stalls tumor growth, especially when combined with standard-of-care (SOC) DNA-damaging agents. Chk1 is a serine-threonine protein kinase in the DNA-damage response pathway involved in cell cycle arrest. Chk1’s secondary role is to regulate DNA replication forks.

To understand the underlying mechanisms of Chk1 inhibition in the context of SOC therapy, we used GBM and Ewing’s sarcoma cell lines to evaluate drug effects on cell cycle arrest and Chk1 activation. These studies will help define biomarkers of therapeutic response that can be used to optimize Chk1-targeted therapies for pediatric GBM and sarcoma.

MATERIALS AND METHODS

Cell Line Type of Tumor
CHLA-10 Primitive neuroectodermal tumor (Ewing Family of Tumors)
SJ-GBM2 Glioblastoma multiforme
TC-71 Ewing’s sarcoma

Pharmaceutical Compound Category
CCNU Topoisomerase I inhibitor
Irinotecan (SN-38) Topoisomerase I inhibitor
Lumazine (CCNU) Alkylating agent

RESULTS

Figure 2. This table describes the cell lines used. Each cell line harbors mutant p53.

Figure 3. This table describes the pharmacological compounds used. CCNU is a standard treatment for GBM. SN-38 is the active metabolite of irinotecan, a SOC for Ewing’s sarcoma.

Methods

• Flow cytometry was used to evaluate cell cycle arrest
• Western blot analysis was used to evaluate regulation of Chk1

RESULTS CONTINUED

Figure 4. The percentage of SJ-GBM2 cells in specific cell cycle phases after 24 hour treatment with CCNU.

Figure 5. The percentage of SJ-GBM2 cells in specific cell cycle phases after 24 hour treatment with CCT.

RESULTS CONTINUED

Figure 6. A Western blot analysis of protein levels in SJ-GBM2 cell lines. Cells were treated with varying concentrations of CCNU. Vinculin ensured equal loading.

METHODS

1. Flow cytometry was used to evaluate cell cycle arrest
2. Western blot analysis was used to evaluate regulation of Chk1

RESULTS CONTINUED

Figure 7. A Western blot analysis of protein levels in TC-71 cell line. Cells were treated with varying concentrations of CCNU. Vinculin was used to ensure equal loading.

RESULTS CONTINUED

CONCLUSIONS

• Via Western analysis, Chk1 activation was confirmed in both GBM and Ewing’s when treated with standard-of-care DNA-damaging agents.
• Flow cytometry showed that inhibition of Chk1 results in cell cycle arrest in S phase.
• Flow cytometry results also showed that DNA-damaging agents cause cell cycle arrest in G2 phase.

FUTURE DIRECTIONS

• Validate Chk1 inhibition by evaluating downstream targets of Chk1, such as Cdc25
• Evaluate cell death mechanisms
• Conduct pharmacodynamic in vivo studies to validate Chk1 activation versus inhibition
• Evaluate combination therapies with Akt inhibitors and Chk1 inhibitors that could block the DNA-damage response pathway

REFERENCE

DNA Image in Figure 1 from: Seidah, Angélique. “Physical Principles (Radiotherapy).” Edited by David A. Mitchell, Markert, British Association of Oral and Maxillofacial Surgeons, 23 Aug. 2017, manfact.uk/treatment/radiotherapy/principles/detailed.


ACKNOWLEDGMENTS

NIH/NIEHS Kennedy Shriver National Institute of Child Health and Human Development
Scientific Club Foundation of Indianapolis
Riley Hospital Precision Genomics Program