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Abstract

Many improvements have been proposed for the basic gravity model specification, most of
which are confirmed by standard statistical tests due to the large number of observations often used
to estimate such models. We use Monte Carlo experiments to examine situations in which features
of models may be found statistically significant (or insignificant) when it is known ex ante that they
are absent (or present) in the underlying data process. Erroneous assumptions about the presence
or absence of lagged dependent variables, fixed effects, free-trade associations and custom unions
are shown to introduce an economically important bias in estimates of the coefficients of interest,
and in some cases to be confirmed spuriously. Policy effects for such initiatives as free trade
associations and currency unions can also be confirmed spuriously when they do not exist in the
data-generating process.
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Introduction 
 
We have argued that both theory and evidence suggest that history plays a role in 
shaping the direction of international trade.  The standard gravity-model 
formulation, which neglects the role of historical factors, suffers from omitted-
variable bias...The implication is that we will never run another gravity equation 
that excludes lagged trade flows.  If our paper is successful (and widely read), 
neither will other investigators.   

 
 Barry Eichengreen and Douglas A. Irwin (1996), pp. 55-56. 
 
...the empirical application of the gravity model is still rather basic.  As 
demonstrated by Cheng and Wall (1999), though providing a high R2, the 
standard estimation method tends to underestimate trade between high-volume 
traders, and overestimate it between low-volume traders.  They attribute this to 
heterogeneity bias...Their fixed-effects method, which I will use in this 
study...allows(s) for trading-pair heterogeneity and (is) statistically superior to the 
standard model. 

 
 Howard Wall (1999), pp. 35, 40 

 
...I find a large positive effect of a currency union on international trade, and a 
small negative effect of exchange rate volatility, even after controlling for a host 
of features...These effects are statistically significant and imply that two countries 
that share the same currency trade three times as much as they would with 
different currencies.  Currency unions like EMU may thus lead to a large increase 
in international trade, with all that entails. 

 
 Andrew K. Rose (2000), p. 7. 
 
 
It has become increasingly common to analyze data on international trade flows 
with the help of gravity models.  These models are simple in structure, fit the data 
well, and are in principle consistent with a wide range of theoretical 
underpinnings (Deardorff, 1998).  The gravity model has been characterized as “a 
very simple model that explains the size of international trade between countries 
with a remarkably consistent (and thus, for economics, unusual) history of 
success as an empirical tool.” (Rose, 2000, 14)  Gravity models have provided 
“some of the clearest and most robust empirical findings in economics.” (Leamer 
and Levinsohn, 1995)  
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Each of this paper’s introductory quotations is a strong statement from a 
widely cited paper.  While the first two are about issues of econometric hygiene 
(specification) and the third addresses an issue of public policy, all three claim 
that some omission of variables has important implications for the interpretation 
of results.  Eichengreen and Irwin (1998) raise the specter that any regressions 
which ignore the effect of history by omitting a lagged dependent variable may be 
misspecified, with the result that policy conclusions drawn from such regressions 
may be misleading.  Cheng and Wall (1999) state that the omission of fixed 
effects may lead to a pattern of over- and under-estimates of trade flows.  Rose 
(2000) found a high effect of currency unions on trade, enough to imply a tripling 
of trade flows under a common currency.  Rose and Stanley (2005), in a review of 
34 recent studies, offer a more conservative consensus estimate of between a 30 
to 90 percent increase in trade.  Even this more modest result has important 
practical implications, as currency unions represent a policy option that is in some 
places being pursued with a great deal of public discussion. 

This paper argues that many previous findings about gravity models suffer 
from a common problem which has not previously been addressed: The data may 
be plentiful and rich to a fault.  Because there are annual (or higher-frequency) 
observations on many pairs of bilateral trading partners, sometimes for many 
product categories, it is not uncommon for gravity modelers to operate with 
thousands or tens of thousands of degrees of freedom in identifying a very few 
parameters.1 This makes it relatively easy to obtain statistical verification (i.e. 
high t-statistics for individual variables or F-statistics for sets of variables) 
whenever the model specification is elaborated in any way.  In turn, this easy 
verification creates incentives to elaborate the model further.2 

                                                           
1For a panel of bilateral trade between n countries with observations for t time periods, there are 
t(n2-n) available observations.  By the standards of gravity modeling, (n=35, t=10) is a relatively 
modest panel, and contains 11,900 observations.  Feasible panels on the order of (n=100, t=30), 
which yield 297,000 observations, have been available in electronic form from a variety of sources 
(IMF Direction-of-Trade Statistics, UN COMTRADE, Statistics Canada) for about a decade now. 

2 It is ironic that the original appeal of the gravity model lay in the fact that it explained a high 
degree of variation in the data with a relatively small number of parameters.  The original double-
log gravity models of Tinbergen (1962) and Pöyhönen (1963) in fact required only three variables 
to explain trade flows, which were further simplified into only two regressors by multiplying 
together exporter’s GDP and importer’s GDP for a simple activity variable. Economic distance 
(usually measured as shipping distance) was the second regressor.  This structure could only have 
been simplified further by dispensing with regression altogether, constraining the coefficients to 
equal those implied by the physical-science model of Newtonian gravity (1 for activity, -2 for 
distance).  Actually letting the regression pick the coefficients was sufficient to cause the amazing 
goodness-of-fit, with two regressors often explaining 50-70 percent of the variation in large 
datasets.  This is what attracted researchers to the methodology in the first place.  
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Given their early general success, gravity models have been required to 
answer ever more specific policy questions.  For example, to assess the effects of 
removing an economic sanction, a fair degree of precision in the estimate of a 
residual or an out-of-sample projection may be required.  To estimate the effects 
of international borders, non-tariff barriers, or new trade agreements, precision in 
the estimate of a dummy variable may be wanted.   Identification issues also 
became important for policy purposes.  For example, because countries that join 
trade agreements are usually near each other, it is important but difficult to 
separate the effect of distance from the effect of the trade agreement.     

Thus, a variety of refined gravity-model specifications have been 
proposed.  Moving from cross-sectional data to time-series panels has allowed the 
use of a lagged dependent variable, country fixed effects for exporters and/or 
importers, log-first-differences of variables, and estimations of time-varying 
regression parameters.  The proliferation of specifications has unfortunately not 
been met by a rapid sifting of the possibilities; there is a great deal of controversy 
over the "correct" specification of the gravity model. There is also debate about 
just which things the model is able to discern, and where its limitations lie.  Given 
the very large volume of data available to gravity modelers, many different 
specifications of the gravity equation can be made to "work" in the sense that they 
generate statistical tests that tend to corroborate the specification’s validity.3   

While some researchers have confidence in gravity models, others suggest 
their strong statistical results may be the result of poor measurement or incorrect 
specification of the model.  In an application of Leamer’s extreme bounds 
analysis, Ghosh and Yamarik (2004) raise doubts that much can be known with 
confidence from the application of gravity models, given the proliferation of 
proposed specifications.   (The authors mention as many as eighteen candidate 
variables that have been used in the literature, without exhausting them all.)4 This 

                                                           
3 One might ask if there is therefore an optimal size of series when applying gravity models. 
Perhaps some data should be discarded to reduce the likelihood of drawing unfounded 
conclusions.  But the optimal amount of data must always be “as much as is available.” More is 
always better, because it is impossible to state in advance what criteria might be used to exclude 
data without biasing results. This is why we take the approach we do: knowing that more data is 
always better, but that it also has the potential to allow spurious results, we try to identify 
procedures that minimize the likelihood of such spurious results. 
4 This particular literature points out a limit of Leamer’s approach.  In effect, the whole literature 
has already taken Leamer’s approach, trying a number of different specifications and finding that 
they all can be statistically justified. Following Leamer, at this point we would need to say that 
there is just no way of knowing the truth in this literature. Our paper is, in effect, an option to 
pursue when the Leamer approach leads to a standoff. We construct multiple virtual realities in 
which we know what the truth is, then ask which model specification most consistently reports the 
truth we already know. 
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literature has by no means reached a consensus, and many versions of the model 
currently coexist.   
 
Method and Data 
 
Monte Carlo simulations were devised for just such agnostic moments.  They 
allow the researcher to create hypothetical but reasonable data that emerge from a 
known data-generating process, and then to evaluate which models most nearly 
and frequently draw correct conclusions about the underlying structure of the 
data.  Monte Carlo techniques have been profitably employed in examining the 
relationship between trade and investment (Keller (1998)), trade patterns and 
technology flows (Keller (2000)), and have been used fruitfully to explore what 
underlies current-account fluctuations (Nason and Rogers (2006).5  Surprisingly, 
this approach has yet to be used to help sort out the merits of alternative gravity-
model specifications.  We find that some common gravity-model findings should 
be taken with a large grain of salt.  They may simply reflect correlations between 
variables included in the estimated model and those included in the “right” 
specification, that is, included in the data generating process.  We use Monte 
Carlo simulations to evaluate a number of common gravity-model specifications:  

A. We begin with panel data on trade flows and trade-related, country-
pair-specific attributes provided by Andrew Rose (Rose, 2000; data 
available at http://faculty.haas.berkeley.edu/arose/RecRes.htm6).  The 
data comprise 33,903 bilateral trade observations for the years 1970, 
1975, 1980, 1985, and 1990, for the 186 countries and other entities 
for which the United Nations Statistical Office reports trade data.  
Rose estimates that these data cover 98% of all trade (Rose, 11).7 

                                                           
5 For a more general discussion of the use of Monte-Carlo methods see Kleijnen (2004) 
6 Though our estimations of Rose’s model (Scenarios Eleven and Twelve below) are very close to 
those he reports, we are unable to exactly replicate his results. Apparently this is because he 
includes “year controls” in his pooled regressions; their coefficients are not reported. A few minor 
data-set errors were reported by reviewers after publication, all involving the language-variable 
coding of several observations for Switzerland and Belgium. Since our aim is Monte Carlo 
simulations, it is a matter of indifference whether the original data or the corrected data are 
employed; we have used the original data for consistency with the published literature.  
7 Trade data come from the World Trade Database. Population and real-GDP data are from the 
Penn World Table 5.6, filled in with World Bank World Development Indicator data where there 
were gaps. Data on location/distance, official language, colonial background, and related 
indicators came from the CIA’s web site. The FTA variable was constructed from the WTO’s web 
site. 
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B.  We estimate the specifications of the gravity model that we judge to be 
either most common or most at issue, which we number throughout the 
paper according to the following scheme: 
1. A simple gravity model (which we call “the Newtonian model”): 

logged two-way trade as a function of logged product of GDPs, 
logged product of per-capita GDPs, logged distance, the standard 
deviation of changes in the relative exchange rate, and dummy 
variables for common languages, contiguous borders, having a 
common colonizer, being part of the same country (as with 
overseas departments of France), and for cases in which one trade 
partner colonized the other. This is perhaps the most common 
extant gravity model. 

2. A trade-pair fixed-effects process, removing the time-invariant 
variables. This is similar to the model preferred by Howard Wall, 
whom we quote in the introduction.  

3. A lagged dependent variable model, which simply adds a lagged 
dependent variable to the original Newtonian specification. With 
this model we aim to assess Eichengreen and Irwin’s conclusion 
that they (and we) should never again run a gravity model that does 
not include a lagged dependent variable.   

4. A model supplementing the Newtonian model with a dummy 
variable indicating if the trade partners are members of the same 
free-trade association. (No lagged dependent variable is included.) 
By comparing these results to a simulation that includes a lagged 
dependent variable, we can test Eichengreen and Irwin’s 
proposition that FTA variables only appear to be significant 
because they proxy an omitted lagged dependent variable. 

5. A model with the FTA dummy and a common-currency-union 
dummy. (No lagged dependent variable is included.) This model is 
used by Rose to reach his provocative conclusion about the large 
trade-creating effects of currency unions. 

 
 
 
 
 
 
 
 
 
 

5

Schaefer et al.: Monte Carlo Appraisals of Gravity Model Specifications

Published by The Berkeley Electronic Press, 2008



 

To summarize the models, we have the following chart: 
Model Number Model name Independent variables 
01 Newtonian Ln(GDPi*GDPj), Ln((GDPi/Popi)*(GDPj/Popj)), 

Ln(Dist), SD(XΔ), common language, common 
colonizer, same country, contiguous border, colonial 
relationship 

02 Fixed Effects (FE) Newtonian, plus trade-pair fixed effects, minus last 
five Newtonian variables 

03 Lagged Dependent Variable 
(LDV) 

Newtonian, plus lagged logged two-way trade 

04 Free Trade Association (FTA) Newtonian, plus FTA dummy 
05 Common Currency Union (CU) Newtonian, plus FTA dummy and common CU 

dummy 
 
Appendix One details the definition of each variable.  For each of 
these five models, we estimate the parameters of the model with an 
appropriate panel-data regression program. 
 

C. Our aim is to conduct a series of pair-wise comparisons among these 
five models. In each comparison, one model serves as the “true,” 
maintained data-generating process, and the other relies upon that 
process for its dependent variable.  We proceed as follows: Using the 
regression results for the maintained “true” model, we generate a full 
panel of predicted values for the left-hand-side variable in that model.  
We perturb each predicted observation with a zero-mean, normally 
distributed random number generator (with standard error set equal to 
the estimated root mean square error from the original regression) to 
form a Monte Carlo data set. For each pair-wise comparison, we repeat 
this perturbation process 250 times to generate 250 Monte Carlo data 
sets.8  These 250-observation panels would be reasonable observations 
of trade flows if the maintained “true” specification of the gravity 
model accurately explained world trade. 

 
D. We then use each 250-observation batch of Monte Carlo datasets to 

estimate parameters for a competing gravity model specification. If the 
competing model identifies a statistically significant explanatory 
variable that does not appear in the maintained true model, we have a 
“false positive;” the competing model has yielded an incorrect (though 
statistically justified) explanation of trade flows.  If the competing 

                                                           
8 Beginning with simulations involving 1250 iterations, we found that gradually reducing the 
number of datasets to 120 had virtually no effect on any of the results.  We use 250 iterations to 
stay on the safe side. 
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model fails to ascribe statistical significance to a variable that is 
significant in the maintained true model, we have a “false negative.”   

 
 This approach allows us to evaluate some of the questions raised in the 
literature.  (For example, do we detect a lagged-dependent-variable coefficient 
when it's not actually present in the data-generating process, or do some 
specifications fail to detect it when it is present?  Can the effects of FTAs be 
distinguished from those of distance?)  Our aim is to offer provisional conclusions 
about the relative strengths and weaknesses of the various specifications of 
gravity models, and if possible to suggest which specifications may most 
frequently lead to correct judgments about the actual (unknown) data-generating 
process. In the Conclusions section we will gather together these findings to offer 
some general comments about the ability of gravity models to draw inferences 
about trade flows. We also offer some best-practice advice about modeling trade 
flows with gravity models. 
 
Results 
 
We present our results as a series of twelve scenarios, each pairing a particular 
data-generating process with a competing (mistaken) specification of the gravity 
model.9  Following our model-numbering scheme in the last section of the paper, 
our naming convention in presenting the results is to refer to Scenario 0x0y as the 
scenario in which specification 0x is the true data-generating process and 
specification 0y is the Monte Carlo estimation model. For example, Scenario 
0102 is the case in which the data are generated by the Newtonian model, but we 
use those data to estimate a fixed effects model. 

Our results are also summarized in Appendix One in five tables—one 
table for each maintained data-generating process.  Each table reports all of the 
Monte Carlo simulations that relied upon the same data-generating process.   The 
tables report the resulting mean parameter estimates, the standard error of the 250 
estimates of each parameter, and the means of the F-statistic, R-squared, and 
standard error of regression.  We also report probability values for standard tests 
of significance of the parameter estimates, along with probability values for tests 
for differences between true data-generating parameters and the Monte Carlo 
estimates of these parameters.10 

                                                           
9 The Stata programs by which our results were generated are available from the authors.   
10   In the Monte Carlo simulation result columns of our tables, one hopes for P-values near one, 
not zero, indicating that a mis-specified model has nonetheless correctly estimated the data-
generating-process parameter, since the null hypothesis underlying these P-values holds that the 
Monte Carlo simulation is telling the truth about the data-generating process.   
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 Scenario One:  Trade is generated by a Newtonian process, but one 
instead estimates a trade-pair fixed-effects model.  We estimate this in two ways: 
Scenario 0102 compares the full Newtonian model with a model that instead 
estimates country fixed-effects.  Scenario 0102Lite compares the fixed-effects 
model to a Newtonian data-generating model that does not include time-invariant 
variables (distance, contiguous border, common language, common country, 
common colonizer, colonizer-colony relationship).  These time-invariant variables 
drop out of fixed-effects estimations, since the fixed-effect coefficient measures 
the influence of everything in the situation that does not change over time, and by 
comparing the fixed-effects results to both versions of the Newtonian model we 
can obtain a fair comparison of the two models while also exploring the 
possibility of excluded-variables misspecification bias in the smaller Newtonian 
model.  The results are found in Table One Column Three, and Table One(Lite) 
Column Three. 
 All variables are highly significant in both the full Newtonian data-
generating model and the FE estimations.  The FE model’s slope estimates 
accurately measure the true parameters, though the FE constant is of course 
significantly different than in the full Newtonian model.  For example, the log 
product of the real GDPs (lrgdp) has a coefficient of .785 in the data-generating-
process, and a coefficient of .805 in the FE model.  Both are highly significant.  
The numbers along the right-hand margin of column three test the null hypothesis 
that the coefficient in the FE model equals .785  The good news here (and for the 
other variables in the FE model) is that the p-value is quite high, .79 in this case, 
and we fail to reject the null.   
 Note also the low R-squared in the simulation (8.9 %), despite its 
respectable F-statistic.   Finally, notice that there is very little difference between 
the “regular” and “Lite” estimates for Model 1, so missing-variable 
misspecification does not seem to be a problem for the smaller Newtonian model. 
In sum, the fixed-effects specification cannot directly measure the effects of the 
categorical variables11, but appears to perform reasonably well otherwise.   
 
 Scenario Two:  Trade is generated by a country-pair fixed-effects process, 
but one instead estimates the Newtonian model (Scenarios 0201 and 0201Lite, 
reported in Table Two, Columns Two, Three and Four). 
 Again, all slopes in the FE data-generating regression and the 
Newtonian estimations are highly significant.  Regarding the data-generating 

                                                           
11 These are also known as “dummy” or “indicator” variables. 
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regression (Column Two), note again the very low R-squared in the FE models 
(4.1 %), despite good F-statistics.12   
 In Scenario 0201 (Column Three), the Newtonian model is far afield of 
the underlying FE model’s coefficients.  When a FE data-generating process is 
estimated by a standard Newtonian model, the results are apparently unreliable.  
For example, in the data-generating process the coefficient on exchange rate 
volatility (“sdd,” a reference to the standard deviation of the dispersion of the 
exchange rate) is -0.012, and the Newtonian model yields an estimate wide from 
the mark at -0.043.  A researcher might be inclined to accept its sdd coefficient 
because of its statistical significance, though the p-value (of 0.0) in the right hand 
margin of column 3 reveals that the estimate is statistically significantly different 
from the “true” data-generating-process value.  Indeed, all of the p-values in the 
right hand margins of columns three and four are approximately 0, and the 
difference between the coefficient estimates and the coefficients in the data 
generating process are often substantial.   
 One might infer (from Tables One, One (Lite), and Two) that fixed 
effects should always be included in gravity models.  The FE model appears to be 
capable of approximating the true data-generating process (except for its 
categorical variables) when fixed effects are not present, and the Newtonian OLS 
model is incapable of approximating the true data-generating process when fixed 

                                                           
12 Note also that in the data-generating regression results (Column Two) the coefficient on GDP in 
the FE regressions has a negative (i.e., the wrong) sign. We suspected that this was a complicated 
artifact of including both Real GDP and Per-Capita Real GDP in the same fixed-effects 
estimation, which we do throughout the paper in order to be consistent with Rose’s original use of 
the data.  It appears our suspicions are correct.  When per-capita real GDP is dropped from the 
data-generating process, real GDP receives a positive coefficient.  We removed per-capita real 
GDP from all of the data-generating processes and Monte Carlo simulations in this paper, and 
found that none of the results important for our conclusions were affected; there were no changes 
in the interpretations of the MC simulations.  For completeness, we note the following effects 
when real per-capita GDP is dropped from the regressions and simulations:    
 Table 1: In the data-generating process, contiguous border and common colonizer shrink; 
contiguous border also becomes insignificant. 
 Table 3: The Newtonian and Newtonian-with-FTA MCs capture the contiguous border 
and common colonizer effects correctly now.  The false-positive finding of the coefficient on FTA 
(column 5) is twice as large now, going from 0.70 to 1.4.  
 Table 4: The LDV model (column 4) does a worse job of estimating the distance 
coefficient than before; there’s now a significant difference from the data-generating process 
coefficient. In the data generating process, contiguous border and common colonizer shrink; 
contiguous border also becomes insignificant. 
 Table 5: In the data generating process, contiguous border and common colonizer shrink, 
and both become insignificant; the coefficient on FTA doubles from estimations that included 
GDP per capita. 
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effects are present.  This conclusion, however, depends upon whether the 
categorical variables are of independent interest; they cannot be obtained in the 
FE specification.   
 Another striking aspect of the Newtonian and LDV estimations in 
Scenarios 0201 and 0203 (Table Two, Columns Three and Five) is that each of 
them contains one or more “false positives.” Distance and common colonizer, for 
example, are absent from the fixed-effects model’s data-generating process, but 
both the Newtonian and the LDV models find a high degree of false statistical 
significance.  As we’ll see below, this is not the last simulation to suggest that 
adding variables to otherwise robust specifications can yield false positives.  
 Finally, one additional big-picture comment that could be drawn from 
these first scenarios raises questions about the value of traditional t-tests of 
significance.  There is little relationship in these simulations between the 
traditional t-statistic and the ability of a model to precisely measure the actual 
population value of the parameter.  
 
 Scenario Three:  Trade data are generated by the full Newtonian model, 
but then modeled by a lagged-dependent variable model. (Scenario 0103, in Table 
1 Column 4) This and the next scenario allow us to explore whether hysteresis13 
might appear to be significant when it is not present in the data-generating 
process, and to see if parameters are mismeasured when real hysteresis is ignored. 
(Note that our LDV tables report both the “raw” or “impact” coefficients and the 
long-run coefficients14) 
 All coefficients are highly significant, except for the LDV coefficient in 
the simulation; thus there are no false negatives or false positives. All coefficients 
are also statistically identical to the true data-generating coefficients.  A lagged-
dependent-variable model applied to a Newtonian world appears to measure 
coefficients correctly. Even the R-squared statistics are approximately the same. 
 
 Scenario Four:  Trade is generated by a lagged-dependent variable 
process, but estimated with the full Newtonian model. (Scenario 0301, reported in 
Table Three, Column Three) 

                                                           
13 “Hysteresis” refers to the dependence of the state of a system on the history of its state, the 
lagging of an effect behind its cause. 
14 See Eichengreen and Irwin (1996) for a discussion of the distinction between impact and long-
run coefficients in a gravity model. 
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 Consider Column Three of Table Three.15  In all cases the simulation 
coefficients are statistically significant, but also significantly different from the 
long-run effects in the data-generating process (reported in Column Two).  All of 
the p-values reported in the right hand margin of column three are zero to two 
decimal places.  Some of the coefficients in the Newtonian model are far different 
from the LDV data-generating process.  For example, the coefficient on whether 
the pair is included in the same nation (comctry) is estimated at 1.737 in the 
Newonian model, but in fact equals 7.786 in the data-generating process.  In sum, 
the Newtonian model’s results do not come close to the LDV’s data-generating 
process.   
  
 Scenario Five: Trade is generated by a country fixed-effects process, 
then modeled ignoring fixed effects but including a lagged dependent variable. 
(Scenario 0203, Table Two, Column Five) This and the next scenario allow us to 
see if hysteresis can be distinguished from, or substituted for, trade-pair fixed 
effects. 
 GDP, per-capita GDP and the standard deviation of the exchange rate 
are all significant in all the regressions, but the LDV simulation gives estimates 
significantly—strikingly–different from the actual data-generating process.  The 
simulation goes on to report four false-positives: distance, common colonizer, 
colony of the trade partner, and LDV.  The estimated coefficients are relatively 
large, and thus potentially significant for policy, especially in the latter three 
cases.  Colonial relationship, for example, is not in the fixed-effects data-
generating-process, but still returns a long-run coefficient of 4.8, with a p-value of 
0.00  If country fixed effects exist but are incorrectly estimated with a LDV 
model, the influence of GDP, per-capita GDP, common colonizer, mutual-colony 
status, and distance are all exaggerated.  These results certainly give reason for 
some caution about routinely including lagged dependent variables in gravity 
models. 
  
 Scenario Six: Trade is generated by a lagged dependent variable 
process, but modeled as trade-pair fixed effects with no LDV. (Scenario 0302, 
Table Three, Column Four16) 
                                                           
15 The long-run effect of an independent variable in the LDV model is calculated by dividing the 
coefficient by one-minus-the-coefficient on the LDV variable.  These results, reported in 
Appendix Table Three, Column Two, are the coefficients that should be compared to those of the 
other models, and the t-statistics and probability values in Columns Three through Five report tests 
of Monte Carlo estimates relative to the long-run data-generating-process coefficients.   
16 In the initial data-generating regression using world trade data, the LDV must bear the 
influences of the non-time-varying coefficients that are excluded from the regression. Thus six 
variables bear statistically insignificant coefficients.   
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 The Monte Carlo FE simulation in this case reports a very poor R-
squared (less than 4 percent!), along with coefficients that are all statistically 
significant but also significantly different from the true parameter values.  The 
errors in the GDP and per-capita GDP coefficients are striking.  These results 
encourage caution that must temper our positive results for fixed-effects 
specifications in Scenarios One and Two.  Taken with Scenario Five, these results 
also suggest an interpretive quandary: it appears that fixed effects are not easily 
distinguished from hysteresis.17 
 
 Scenario Seven:  Trade is generated by the simple Newtonian model 
with an added LDV, but estimated with an FTA model (Scenario 0304, Table 
Three, Column Five). In this and the next scenario, we consider the 
Eichengreen/Irwin-inspired literature that asks if apparent FTA effects might 
actually be caused by hysteresis.   
 There is evidence that Eichengreen and Irwin may be correct. The dummy 
variable for FTA membership shows a false positive relationship with the value of 
trade; though the variable is not in the data-generating process, the coefficient is 
.705 and is statistically significant in the FTA model.   
 More broadly, all of the coefficients in the FTA model are statistically 
significant, but significantly different from the coefficients in the true data 
generating process, and the differences are striking. The long-run coefficient on 
sdd (the measure of exchange rate variability) is -.19, but the FTA model returns 
an estimate of -.026.  Once again, it’s interesting to note the limits of statistical 
significance.  The -.026 has a p-value of 0.00 in the FE model, despite missing the 
population parameter (from the LDV data-generating process) by a factor of more 
than 3.  In sum, if a LDV process is modeled by a FTA regression, it appears that 
the results are not reliable.   
 
 Scenario Eight:  Trade is generated by a process in which FTAs are 
significant, but this process is modeled by a lagged-dependent variable regression 
without an FTA variable. (Scenario 0403, Table Four, Column Four)   
 In this case, there is no false positive on the LDV variable; the 
coefficient on the LDV variable is statistically insignificant.  In addition, all 
coefficients are significant in both regressions, the R-squares are similar, and no 
LDV-equation coefficients are statistically different from those in the data 

                                                           
17 Here is another, more positive interpretation:  since gravity models routinely have outstanding 
fits, fixed-effects models among others, perhaps the under-4-percent R-squared finding in column 
4 can be taken as evidence that researchers are seldom in the position of estimating an LDV world 
with an FE model.   
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generating process.  If an FTA process is modeled by an LDV regression, there 
appears to be no significant misrepresentation of the data-generating process. In 
effect, Scenario 0403 confirms Scenario 0103.  Inclusion or exclusion of the 
additional LDV variable is unlikely to cause spurious findings of significant lags, 
and unlikely to result in mismeasurement of the other coefficients.    Similarly, 
0401 and 0104 tend to confirm each other – the coefficients on other variables are 
robust to the inclusion or exclusion of the FTA variable (with the exception of the 
Distance coefficient in Simulation 0401). 
 
 Scenario Nine:  Trade is generated by the full Newtonian model, but 
modeled with an FTA regression. (Scenario 0104, Table One, Column Five) This 
scenario and the next allow us to consider whether the influence of FTAs can be 
distinguished from influences of time-invariant factors like distance.18 
  All coefficients are significant in all regressions, and none in the 
simulation are statistically different from those in the data generating process.  In 
addition, the coefficient on the FTA variable is insignificant (with a p-value of 
.47).  It appears that no harm is done in this case by including an irrelevant FTA 
variable.   
 
 Scenario Ten: FTAs influence the data-generating process, but it is 
modeled by the full Newtonian model without an FTA variable. (Scenario 0401, 
Table Four, Column Three)   
 All coefficients are significant and not significantly different from the 
true data-generating process, except that the coefficient on distance is 
overestimated in the Newtonian model (equaling -1.104 in the FTA model but 
estimated at -1.149 in the Newtonian).  The last several scenarios give some 
confidence that the FTA variable measures what it claims to measure, and that the 
influence of FTAs can be distinguished from the effects of distance.  
 
 Scenario Eleven:  Trade is generated by a process influenced by FTAs, 
but estimated with a model that includes both FTAs and currency unions. 
(Scenario 0405, Table Four, Column Five) This and the next scenario allow us to 
consider the potential for measuring independent currency-union effects when 
they exist in the data-generating process, and rejecting their influence when they 
do not exist. (e.g., Rose, 2000)19  
                                                           
18 This provides evidence on whether FTAs cause, or result from, high levels of trade.  Put 
differently, do FTAs generate trade, or are FTAs formed where trade already flourishes due to of 
proximity?  
19  We believe we used the same data, model and programming language as Rose (2000), but were 
unable to exactly replicate his results.  Fortunately exact replication is not necessary for the 
purposes of our paper.  Here we report the names of the model parameters, followed by our 
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 With currency unions absent from the data-generating process, the CU 
estimations yield a false positive for currency unions’ effects, with a relatively 
large (at .903) and statistically-significant coefficient.  None of the other 
simulation coefficients are significantly different from the data-generating 
process.  If an irrelevant CU variable is included in estimations, it appears that 
none of the other coefficients become biased, but there is risk of a false positive 
on the CU variable. 
 
 Scenario Twelve:  Trade is generated by a process influenced by both 
FTAs and currency unions, but then modeled by a regression that does not include 
currency unions. (Scenario 0504, Table Five, Column Three) 
 All coefficients are significant in the non-CU regression, and none in 
that regression are significantly different from those in the data-generating 
process. The unmodeled influence of CUs seems to be assigned primarily to the 
Common Country and FTA coefficients, as only those coefficients are unlike 
those in the data-generating process. Even these differences are not statistically 
significant.  Taken with the last scenario, this counsels some caution: If CUs 
affect trade but remain unmodeled, the resulting coefficients are not biased, but if 
an irrelevant CU variable is included there is risk of measuring a false positive.  
There may yet be cause for some agnosticism about the importance of CUs.  
 By now false positives have been observed in several scenarios.  This 
phenomenon might be expected when sample sizes are large and there is 
significant multicollinearity among independent variables, and might partially 
explain the results of Scenarios Eleven and Twelve. In Table Six we explore this 
potential explanation. When the CU variable is treated as a dependent variable 
and regressed against the remaining independent variables, all of the coefficients 
have very high statistical significance; seven of the eleven coefficients have 
double-digit t-statistics.20  The largest coefficients are associated with the 
Common Country and FTA variables, consistent with the observation in Scenario 
                                                                                                                                                               
parameter estimates (from our Table Five, Column Two, starred when our estimate is 5%-
statistically-significantly different from the Rose estimate), followed by Rose’s parameter 
estimates (Rose (2000), Table One, “Pooled” column):   
Log-Real GDP:  0.790, 0.80.  Log-Real GDP per capita:   0.584*, 0.66 
Log-Distance:  -1.089, -1.09.  Contiguous Border dummy:  0.594,   0.53 
Common Language dummy: 0.447, 0.40. Common Country dummy:   1.398,   1.29 
Common Colonizer dummy: 0.511, 0.63.  Colonial Relationship dummy:  2.151,   2.20 
Std. Dev. of Exchange Rate: -0.043*, -0.017.  FTA dummy:   0.837,   0.99 
CU dummy:  0.903*, 1.21.   N:       22,948, 22,948 
R2:  0.605, 0.63.   RMSE:            2.093, 2.02 
20 Our principal-components analysis of the same variables confirms that only four eigenvectors 
have eigenvalues greater than one, and that CU has a relatively large eigenvector coefficient in 
three of these eigenvectors. 
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Twelve that these two coefficients were the most affected by the exclusion of the 
CU variable from the simulation regression. Thus a falsely-positive CU effect 
appears to emerge because of multicollinearity combined with a large number of 
degrees of freedom.  
 
Conclusions  
 
The gravity model’s popularity is based on its strong empirical performance.  
Indeed its basic architecture is strong—GDP, distance, and other traditional 
variables perform well throughout our scenarios.  But our simulations suggest 
several cautionary tales that should be explored further using a variety of data sets 
and methodological approaches.  
 First, the simulations suggest that there is some wisdom in routinely 
including either a lagged dependent variable or fixed effects when estimating 
gravity models, though two cautions must immediately be added: 1. When the 
data process is driven by a lagged dependent variable rather than fixed effects, a 
fixed effects estimation appears to go awry, and the converse can be said when FE 
processes are modeled by LDV estimations. It does not appear to be possible to 
distinguish fixed effects from hysteresis in traditional gravity modeling—a 
serious problem, since the investigator never knows in advance which influence is 
present in the data.  Researchers who present the results of either model may owe 
their readers a presentation of the other for comparison. 2. Fixed effects are 
sometimes included in gravity equations to account for idiosyncratic country-pair 
effects on trade that are otherwise not measurable. Unfortunately, this practice 
also excludes all measurable but time-invariant influences. When fixed effects are 
present in the data generating process and other categorical variables also 
influence trade, it appears that traditional gravity modeling may not be a reliable 
method for measuring the categorical variables’ influence, since the simple 
Newtonian model and the LDV model both returned false positives when fixed 
effects enter the data generating process. 
 Our simulations also indicate that FTA effects can successfully be 
separated from the effects of distance, but again a caution must be sounded: 
Apparent FTA effects can be due to hysteresis, and apparent hysteresis may in 
fact reflect an FTA effect. As with FE and LDV models, the researcher faces 
difficulties in distinguishing LDV and FTA effects with traditional gravity 
equations. 
 Our simulations also indicate that apparent currency union effects may 
be the result of the combined influence of multicollinearity and a generous 
number of degrees of freedom. It appears that no serious damage is done to other 
coefficient estimates when CUs do influence trade but the CU variable is deleted 
from the estimation. 
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 Finally, our simulations raise questions about the value of traditional t-
tests in gravity modeling with large data sets, as a number of false positives and 
false negatives were reported throughout the results. It has become increasingly 
popular to include fixed effects while omitting other traditional variables so that 
some new variable of interest can be investigated, under the assumption that the 
fixed effects “soak up” the effects of the deleted traditional variables.  However, 
as fewer traditional variables are included, it appears to become more likely that 
any newly-introduced variable will prove (falsely) significant.  
 As Monte Carlo simulations, there is no guarantee that our results will 
be supported by other datasets, nor indeed by the addition of variables to the 
present data set.  But we are hopeful that as others produce simulations involving 
a variety of data sources and variables, researchers will gradually reach a 
consensus that encourages some approaches and cautions away from others. 
  
Appendix One:  Simulation Results 
 
 
Variable definitions: 

 
lrgdp:  log of product of country real GDPs 
 
lrgdppc: log of ((product of country real GDPs)/(product of country populations)) 
 
ldist:   log of distance between the trade pair 
 
contig:  binary variable, =1 if pair shares a contiguous border 
 
comlang: binary variable, =1 if pair shares a common language 
 
comctry: binary variable, =1 if pair is part of the same nation (e.g., France and overseas 

departments) 
 
comcol: binary variable, =1 if pair were colonies after 1945 with same colonizer 
 
colonial: binary variable, =1 if one in pair was colonized by the other 
 
sdd:   standard deviation of change in bilateral exchange rate 
 
FTA:   binary variable, =1 if pair shares a FTA 
 
CU:   binary variable, =1 if pair shares a currency union agreement 
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 Table One: Newtonian Data-Generating Process (DGP) 
 
Column two shows the parameters that generate the data.  Columns three through five show the 
simulation estimates generated from these data. Numbers in bold in columns three through five 
show each estimated coefficient, and the probability value for a test that this coefficient is identical 
to the true data-generating parameter.  (For estimated coefficients that do not appear in the data-
generating process, the emboldened probability value presents a test that the estimated coefficient 
is significantly non-zero.) 

  
(1) (2) 

Newtonian 
DGP 

(3) 
0102: Fixed effects 

estimation 

(4) 
0103: LDV 
estimation* 

(5) 
0104: FTA 
estimation 

Variable Coefficient 
(t-stat)    
Prob{t) 

Coefficient 
(t-stat)  
Prob{t} 

t(error) 
Prob{t} 

Coefficient 
(t-stat)  
Prob{t} 

t(error)   
Prob{t} 

Coefficient 
(t-stat) 

(Prob{t}) 

t(error) 
Prob{t} 

lrgdp 0.785 
(135.9)    
(0.00) 

0.805 
(10.5)    
(0.00) 

0.3  
(0.79) 

0.785 
(56.1)     
(0.00) 

0.4 
(0.97) 

0.785 
(135.3)   
(0.00) 

-0.02 
(0.99) 

lrgdppc 0.596 
(55.2)      
(0.00) 

0.558 
(4.8)      
(0.00) 

-0.3 
(0.74) 

0.594 
(4.8)      
(0.00) 

-0.1 
(0.94) 

0.595 
(54.1)    
(0.00) 

-0.07 
(0.94) 

ldist -1.148 
(-60.4)     
(0.00) 

--- --- -1.150 
(35.9)    
(0.00) 

-0.05 
(0.96) 

-1.149 
(58.3)    
(0.00) 

-0.03 
(0.98) 

contig 0.587 
(6.08)      
(0.00) 

--- --- 0.587 
(4.1)      
(0.00) 

-0.00 
(0.99) 

0.584 
(6.1)      
(0.00) 

-0.04 
(0.97) 

comlang 0.490 
(11.7)      
(0.00) 

--- --- 0.490 
(7.9)      
(0.00) 

0.01 
(0.98) 

0.488 
(11.6)    
(0.00) 

-0.07 
(0.95) 

comctry 2.009 
(7.6)        
(0.00) 

--- --- 1.948 
(3.3)      
(0.00) 

-0.10 
(0.92) 

1.97 
(7.4)      
(0.00) 

-0.15 
(0.88) 

comcol 0.584 
(11.0)      
(0.00) 

--- --- 0.584 
(6.7)       
(0.00) 

0.00 
(0.99) 

0.588 
(11.0)     
(0.00) 

0.07 
(0.94) 

colonial 2.099 
(17.9)      
(0.00) 

--- --- 2.095 
(12.8)     
(0.00) 

-0.02 
(0.98) 

2.090 
(17.8)     
(0.00) 

-0.08 
(0.94) 

sdd -0.043 
(-21.2)     
(0.00) 

-0.043 
(14.3)    
(0.00) 

-0.1 
(0.91) 

-0.043 
(15.4)     
(0.00) 

-0.04 
(0.97) 

-0.043 
(21.5)     
(0.00) 

-0.03 
(0.97) 

LDV --- --- --- -0.001 
(0.08)    
(0.47) 

--- --- --- 

FTA --- --- --- --- --- -0.007 
(0.07)    
(0.47) 

--- 

constant -17.763 
(-69.9)     
(0.00) 

 -8.0 
(0.00) 

-17.731 
(36.9)    
(0.00) 

-0.1 
(0.95) 

-17.742 
(69.4)    
(0.00) 

0.08 
(0.93) 

        
2R  0.603 0.089  0.574  0.603  

F stat 3870.49 526.63  1379.85  3481.27  
rmse 2.098 2.099  2.098  2.098  
N 22948 250 x 

22948 
 250 x 

22948 
 250 x 

22948 
*Only the impact coefficients are reported, since the LDV coefficient is statistically zero. 
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Table One (Lite): Lite-Newtonian Data-Generating Process (DGP) 
 
Column two shows the parameters that generate the data.  Column three shows the simulation 
estimates generated from these data. Numbers in bold in column three show each estimated 
coefficient, and the probability value for a test that this coefficient is identical to the true data-
generating parameter.  (For estimated coefficients that do not appear in the data-generating 
process, the emboldened probability value presents a test that the estimated coefficient is 
significantly non-zero.) 
  

(1) (2) 
Lite-

Newtonian 
DGP 

(3) 
0102Lite: Fixed 

effects estimation 

Variable Coefficient 
(t-stat)    
Prob{t) 

Coefficient 
(t-stat)   
Prob{t} 

t(error) 
Prob{t} 

lrgdp 0.688 
(113.0)    
(0.00) 

0.694 
(8.0)      
(0.00) 

0.07  
(0.94) 

lrgdppc 0.594 
(49.7)      
(0.00) 

0.589 
(4.5)      
(0.00) 

-0.04 
(0.97) 

ldist --- --- --- 
contig --- --- --- 
comlang --- --- --- 
comctry --- --- --- 
comcol --- --- --- 
colonial --- --- --- 
sdd -0.055 

(-24.0)     
(0.00) 

-0.055 
(16.2)     
(0.00) 

-0.05 
(0.96) 

LDV --- --- --- 
FTA --- --- --- 
constant -15.739 

(-67.2)     
(0.00) 

-23.711 
(18.2)    
(0.00) 

--- 

    
2R  0.497 0.066  

F stat 7557.33 384.77  
rmse 2.3614 2.362  
N 22948 250 x 

22948 
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Table Two: Fixed Effects Data-Generating Process (DGP) 
 
Column two shows the parameters that generate the data.  Columns three through five show the 
simulation estimates generated from these data. Numbers in bold in columns three through five 
show each estimated coefficient, and the probability value for a test that this coefficient is identical 
to the true data-generating parameter.  (For estimated coefficients that do not appear in the data-
generating process, the emboldened probability value presents a test that the estimated coefficient 
is significantly non-zero.) 

 
(1) (2) 

Fixed 
Effects 

DGP 

(3) 
0201: Newtonian 

estimation 

(4) 
0201Lite: 

Newtonian 
estimation, Lite 

version 

(5) 
0203: LDV estimation 

Variable Coefficient 
(t-stat) 
Prob{t) 

Coefficie
nt 

(t-stat) 
Prob{t} 

t(error) 
Prob{t} 

Coefficie
nt 

(t-stat) 
Prob{t} 

t(error)  
Prob{t} 

Impact 
Coefficient 

(t-stat) 
(Prob{t}) 

Long-run 
Coefficie

nt 
=impact/ 
(1-.935) 

t(error,LR
) 

Prob{t} 

lrgdp -0.438 
(-9.4)     
(0.00) 

0.785 
(135.9) 
(0.00) 

211.8 
(0.00) 

0.688 
(114.7) 
(0.00) 

185.0 
(0.00) 

0.038 
(5.3)      

(0.00) 

0.585 9.3   
(0.00) 

lrgdppc 1.224 
(17.4)    
(0.00) 

0.596 
(55.2) 
(0.00) 

-58.2 
(0.00) 

0.593 
(49.6) 
(0.00) 

-52.7 
(0.00) 

0.120 
(12.0)     
(0.00) 

1.846 4.0    
(0.00)    

ldist --- -1.148 
(60.4) 
(0.00) 

--- --- --- -0.074 
(4.5)      

(0.00) 

-1.138 --- 

contig --- 0.588 
(6.1)   
(0.00) 

--- --- --- -0.072 
(0.95)    
(0.17) 

-1.108 --- 

comlang --- 0.493 
(24.3) 
(0.00) 

--- --- --- 0.007 
(0.21)    
(0.41) 

0.108 --- 

comctry --- 1.857 
(7.0)    
(0.00) 

--- --- --- 0.271 
(0.88)    
(0.19) 

4.169 --- 

comcol --- 0.582 
(10.9) 
(0.00) 

--- --- --- 0.226 
(4.96)    
(0.00) 

3.477 --- 

colonial --- 2.109 
(17.9) 
(0.00) 

--- --- --- 0.312 
(3.6)      

(0.00) 

4.800 --- 

sdd -0.012 
(-6.7)     
(0.00) 

-0.043 
(21.5) 
(0.00) 

-15.2 
(0.00) 

-0.054 
(23.8) 
(0.00) 

-18.6 
(0.00) 

-0.008 
(5.3)      

(0.00) 

-0.123 4.8   
(0.00) 

LDV --- --- --- --- --- 0.935 
(132.0)  
(0.00) 

--- --- 

FTA --- --- --- --- --- --- --- --- 
constant -4.662 -17.757 -8.0 -23.578 --- -2.077 --- --- 

(6.64)    
(0.00) 

(69.8)  
(0.00) 

(0.00) (103.9) 
(0.0) 

(8.3)      
(0.00) 

         
2R  0.041(w/in) 0.603  0.497  0.867 0.867  

F stat 233.51 3869.39  7559.76  6650.51 6650.51  
rmse 1.273 2.099  2.361  1.101 1.101  
N/#group
s 

22948/670
7 

250 x 
22948 

 250 x 
22948 

 250 x 
22948 

250 x 
22948 
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 Table Three: Lagged Dependent Variable Data-Generating Process (DGP) 
 
 

Column two shows the parameters that generate the data—both impact and long-run coefficients.  
Columns three through five show the simulation estimates generated from these data. Numbers in 
bold in columns three through five show each estimated coefficient, and the probability value for a 
test that this coefficient is identical to the true data-generating parameter—the long run parameter, 
wherever a long-run parameter is available.  (For estimated coefficients that do not appear in the 
data-generating process, the emboldened probability value presents a test that the estimated 
coefficient is significantly non-zero.) 

  

(1) (2) 
LDV DGP 

(3) 
0301: Newtonian 

estimation 

(4) 
0302: FE estimation 

(5) 
0304: FTA estimation 

Variabl
e 

Impact 
Coefficien

t 
(t-stat) 
Prob{t) 

Long-run 
coefficien

t 
=impact/   
(1-.958) 

Coefficient 
(t-stat)    
Prob{t} 

t(error,LR
) 

Prob{t} 

Coefficie
nt 

(t-stat) 
Prob{t} 

t(error,LR
)     

Prob{t} 

Coefficie
nt 

(t-stat) 
(Prob{t}) 

t(error,LR) 
Prob{t} 

lrgdp 0.036 
(5.89)   
(0.00) 

0.857 0.776 
(101.81)  

(0.00) 

-10.6  
(0.00) 

-0.711 
(8.3)   
(0.00) 

18.3 
(0.00) 

0.779 
(102.2) 
(0.00) 

-10.2 (0.00) 

lrgdppc 0.064 
(7.59)   
(0.00) 

1.524 0.647 
(45.22)    
(0.00) 

-61.3 
(0.00) 

1.000 
(8.2)   
(0.00) 

-4.3  
(0.00) 

0.633 
(43.9) 
(0.00) 

-61.8 (0.00) 

ldist -0.020 
(-1.42) 
(0.16) 

-0.476 -1.066 
(45.38)    
(0.00) 

25.1 
(0.00) 

--- --- -1.024 
(50.9) 
(0.00) 

27.2 (0.00) 

contig 0.082 
(1.29)   
(0.20) 

1.952 0.503 
(4.21)      
(0.00) 

-12.1 
(0.00) 

--- --- 0.469 
(3.9)   

(0.00) 

-12.3 (0.00) 

comlan
g 

-0.040 
(-1.43) 
(0.15) 

-0.952 0.461 
(8.98)      
(0.00) 

27.5 
(0.00) 

--- -- 0.441 
(8.6)   

(0.00) 

27.2 (0.00) 

comctr
y 

0.327 
(1.3)     

(0.21) 

7.786 1.737 
(3.55)      
(0.00) 

-12.4 
(0.00) 

--- --- 1.554 
(3.2)   

(0.00) 

-12.8 (0.00) 

comcol 0.030 
(0.79)   
(0.43) 

0.714 0.534 
(7.43)      
(0.00) 

-2.5  
(0.01) 

--- --- 0.496 
(6.88) 
(0.00) 

-3.0  (0.00) 

colonial 0.024 
(.3)       

(0.75) 

0.571 1.770 
(13.15) (0.00) 

8.9   
(0.00) 

--- --- 1.782 
(13.3) 
(0.00) 

9.0   (0.00) 

sdd -0.008 
(-6.64) 
(0.00) 

-0.190 -0.026 
(11.06)    
(0.00) 

-69.8 
(0.00) 

-0.015 
(7.3)   
(0.00) 

-85.2 
(0.00) 

-0.026 
(11.2) 
(0.00) 

-70.6 (0.00) 

LDV 0.958 
(159.8) 
(0.00) 

 --- --- --- --- --- --- 

FTA ---  --- --- --- --- 0.705 
(6.49) 
(0.00) 

--- 

const. -1.805 
(-8.5)   
(0.00) 

 -19.109 
(55.75)    
(0.00) 

-50.5 
(0.00) 

18.816 
(11.8) 
(0.00) 

12.9 
(0.00) 

-19.364 
(56.2) 
(0.00) 

-51.00 
(0.00) 

         
2R  0.902  0.658  0.036  0.659  

F stat 9419.20  2184.43  74.61  1978.20  
rmse 0.932  1.7420  0.963  1.738  
N 10246  250 x 10246  250 x 

10246 
 250 x 

10246 
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Table Four: FTA Data-Generating Process (DGP) 
 
 

Column two shows the parameters that generate the data.  Columns three through five show the 
simulation estimates generated from these data. Numbers in bold in columns three through five 
show each estimated coefficient, and the probability value for a test that this coefficient is identical 
to the true data-generating parameter.  (For estimated coefficients that do not appear in the data-
generating process, the emboldened probability value presents a test that the estimated coefficient 
is significantly non-zero.) 

  

(1) (2) 
FTA DGP 

(3) 
0401: Newtonian 

estimation 

(4) 
0403: LDV 
estimation* 

(5) 
0405: FTA + CU 

estimation 

Variable Coefficient 
(t-stat)   
Prob{t) 

Coefficient 
(t-stat)  
Prob{t} 

t(error) 
Prob{t} 

Coefficient 
(t-stat)  
Prob{t} 

t(error)   
Prob{t} 

Coefficient 
(t-stat) 

(Prob{t}) 

t(error) 
Prob{t} 

lrgdp 0.788 
(136.4)   
(0.00) 

0.785 
(135.9)   
(0.00) 

-0.5  
(0.63) 

0.778 
(56.0)    
(0.00) 

-0.7 
(0.497) 

0.790 
(136.6)    
(0.00) 

0.46 
(0.64) 

lrgdppc 0.583 
(53.6)     
(0.00) 

0.595 
(55.1)    
(0.00) 

1.1 
(0.26) 

0.594 
(31.1)    
(0.00) 

0.6 
(0.54) 

0.584 
(53.7)    
(0.00) 

0.12 
(0.91) 

ldist -1.104 
(-56.1)    
(0.00) 

-1.149 
(60.5)    
(0.00) 

-2.4 
(0.02) 

-1.150 
(36.1)    
(0.00) 

-1.5 
(0.14) 

-1.089 
(55.0)    
(0.00) 

0.76 
(0.44) 

contig 0.584 
(6.06)     
(0.00) 

0.584 
(6.05)    
(0.00) 

0.0  
(0.999) 

0.624 
(4.3)      
(0.00) 

0.28 
(0.78) 

0.594 
(6.2)      
(0.00) 

0.11 
(0.91) 

comlang 0.470 
(11.2)     
(0.00) 

0.487 
(11.6)    
(0.00) 

0.4  
(0.67) 

0.491 
(7.9)      
(0.00) 

0.3 
(0.73) 

0.447 
(10.6)    
(0.00) 

-0.54 
(0.59) 

comctry 1.825 
(6.9)       

(0.00) 

1.967 
(7.4)       
(0.00) 

0.5  
(0.59) 

1.988 
(3.4)      
(0.00) 

0.28 
(0.78) 

1.40 
(5.1)      
(0.00) 

-1.56 
(0.12) 

comcol 0.548 
(10.3)     
(0.00) 

0.588 
(11.0)     
(0.00) 

0.7 
(0.46) 

0.593 
(6.8)      
(0.00) 

0.52 
(0.60) 

0.511 
(9.5)      
(0.00) 

-0.70 
(0.48) 

colonial 2.123 
(18.1)     
(0.00) 

2.090 
(17.8)    
(0.00) 

-0.3  
(0.78) 

2.091 
(12.8)     
(0.00) 

-0.2 
(0.84) 

2.151 
(18.3)      
(0.00) 

0.24 
(0.81) 

sdd -0.043 
(-21.5)    
(0.00) 

-0.043 
(21.6)    
(0.00) 

0.2 
(0.87) 

-0.043 
(15.3)    
(0.00) 

0.1 
(0.92) 

-0.043 
(21.5)    
(0.00) 

0.25 
(0.80) 

LDV --- --- --- 0.006 
(0.44)    
(0.33) 

--- --- --- 

FTA 0.903 
(8.8)       

(0.00) 

--- --- --- --- 0.837 
(8.1)      
(0.00) 

-0.65 
(0.52) 

CU --- --- --- --- --- 0.903 
(6.2)      
(0.00) 

 

constant -18.023 
(-70.6)    
(0.00) 

-17.744 
(69.9)    
(0.00) 

1.1 
(0.27) 

-17.535 
(36.5)    
(0.00) 

1.0 
(0.31) 

-18.262 
(70.8)    
(0.00) 

-0.93
(0.35) 

        
2R  0.604 0.603  0.574  0.605  

F stat 3502.88 3868.17  1380.99  3193.05  
rmse 2.095 2.098  2.099  2.093  
N 22948 250 x 

22948 
 250 x 

22948 
 250 x 

22948 
*Only the impact coefficients are reported, since the LDV coefficient is statistically zero. 

21

Schaefer et al.: Monte Carlo Appraisals of Gravity Model Specifications

Published by The Berkeley Electronic Press, 2008



 

Table Five: FTA + CU Data-Generating Process (DGP) 

 

 
(1) (2) 

FTA + CU 
DGP 

(3) 
0504: FTA  
estimation 

Variable Coefficient 
(t-stat)   
Prob{t) 

Coefficient 
(t-stat) 

(Prob{t}) 

t(error) 
Prob{t} 

lrgdp 0.790 
(136.6)   
(0.00) 

0.788 
(136.5)   
(0.00) 

-0.46 
(0.64) 

lrgdppc 0.584 
(53.7)     
(0.00) 

0.583 
(53.6)    
(0.00) 

-0.12 
(0.91) 

ldist -1.089 
(-55.0)    
(0.00) 

-1.104 
(56.1)    
(0.00) 

-0.77 
(0.44) 

contig 0.594 
(6.17)     
(0.00) 

0.584 
(6.1)      

(0.00) 

-0.11 
(0.91) 

comlang 0.447 
(10.6)     
(0.00) 

0.470 
(11.2)    
(0.00) 

0.55 
(0.59) 

comctry 1.398 
(5.1)       

(0.00) 

1.825 
(6.9)      

(0.00) 

1.61 
(0.11) 

comcol 0.511 
(9.5)       

(0.00) 

0.548 
(10.3)    
(0.00) 

0.70 
(0.48) 

colonial 2.151 
(18.3)     
(0.00) 

2.123 
(18.1)    
(0.00) 

-0.24 
(0.81) 

sdd -0.043 
(-21.2)    
(0.00) 

-0.043 
(21.5)    
(0.00) 

-0.25 
(0.80) 

LDV --- --- --- 
FTA 0.837 

(8.1)       
(0.00) 

0.903 
(8.8)      

(0.00) 

0.65 
(0.52) 

CU 0.903 
(6.2)       

(0.00) 

--- --- 

constant -18.262 
(-70.8)    
(0.00) 

-18.023 
(70.6)    
(0.00) 

  

    
2R  0.605 0.604  

F stat 3193.05 3502.88  
rmse 2.093 2.095  
N 22948 250 x 

22948 
 

 

 
Column two shows the parameters that generate the data.  Column three shows the simulation 
estimates generated from these data. Numbers in bold  in column three show each estimated 
coefficient, and the probability value for a test that this coefficient is identical to the true data-
generating parameter.  (For estimated coefficients that do not appear in the data-generating 
process, the emboldened probability value presents a test that the estimated coefficient is 
significantly non-zero.) 
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Table Six: CU Effects and Multicollinearity 
 
Column two reports coefficients in a regression of the Custom Unions variable against all other 
independent variables in the largest of the preceding models. 

 
(1) (2) 

CU as 
Dependent 

Variable 
Variable Coefficient 

(t-stat)   
Prob{t) 

lrgdp -0.003 
(-11.41)   
(0.00) 

lrgdppc -0.001 
(-2.83)     
(0.005) 

ldist -0.017 
(-18.88)    
(0.00) 

contig -0.012 
(-2.71)     
(0.01) 

comlang 0.025 
(13.4)     
(0.00) 

comctry 0.472 
(39.6)       
(0.00) 

comcol 0.042 
(17.3)       
(0.00) 

colonial -0.031 
(-5.83)     
(0.00) 

sdd -0.001 
(-6.2)      
(0.00) 

FTA 0.074 
(16.0) 
(0.00) 

constant 0.265 
(23.0)     
(0.00) 

  
2R  0.178 

F stat 497.39 
rmse 0.095 
N 22948 
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