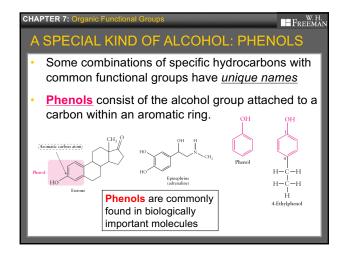
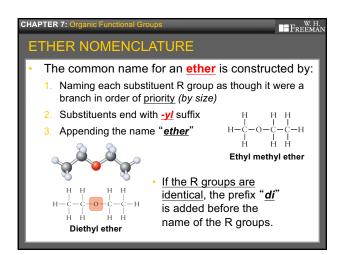
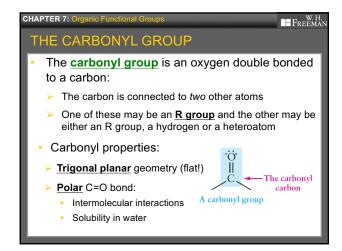


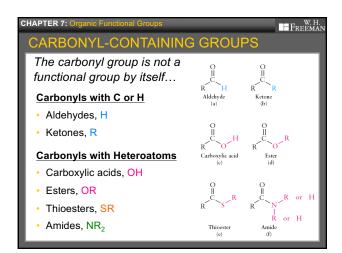
CH	NAPTER 7: Organic Functional Groups	I. AN
	UPAC NOMENCLATURE RULES	
	1. Assign the root name. Use IUPAC rules. The main chain is the longest chain containing the functional group.	
	2. Assign the suffix. Match the <u>suffix</u> of the "main chain" to the IUPAC <u>name of the primary functional group</u> .	
	3. Assign a locator number for the functional groups. Begin numbering the main chain from the end closest to the primary functional group. Place the locator number, followed by a dash, in front of the root name.	
	4. Assign prefixes for other substituents. If the main chain contains "substituents", assign a <u>name</u> and <u>locator number</u> as a <u>prefixes</u> to the root name.	

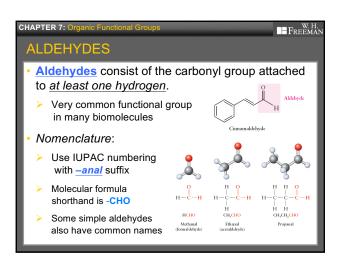


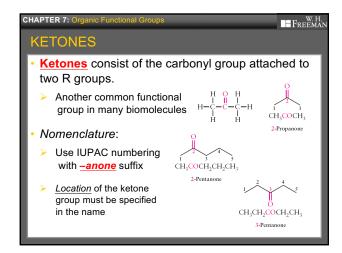


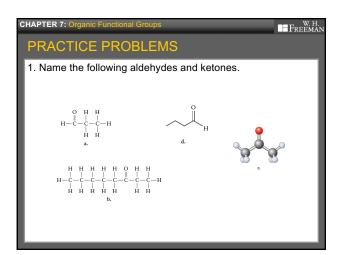
CHAPTER 7: Organic Functional Groups W. H. FREEMAN
SKELETAL LINE STRUCTURES OF ETHERS AND ALCOHOLS
Two rules dictate structural representations with heteroatom functional groups:
Heteroatoms (such as oxygen) <u>must always be</u> <u>indicated with letters</u> in the skeletal line structures
Hydrogens bound to the heteroatoms must also be indicated.
OH O
н н н н н н н н н н н н н н н н н н н

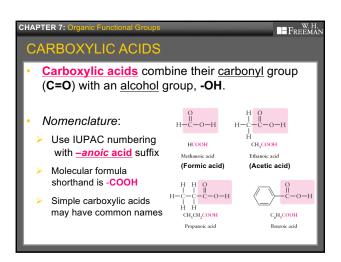

CHAPTER 7: Organic Functional Groups W. H. FREEMAN		
ALCOHOL NOMENCLATURE		
 The IUPAC suffix when an <u>alcohol</u> is the primary functional group is: -anol 		
The most common "alcohol" is the one consumed in beverages: ethanol		
How would we name the alcohol below?		
OH H H H H H H H-C-C-C-C-C-H H H H H H H-C-H H H H H H H-C H		

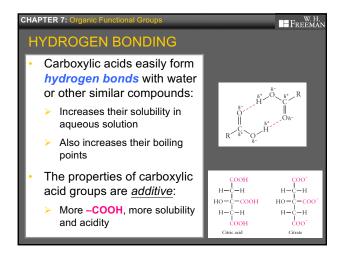

CHAPTER 7: Organic Functional Gro	ups	_	Freeman
CLASSES OF ALCOHOLS			
 The alcohol group (F carbon with 1-3 othe 			to a
Primary (1°) alcoh	ols →1R	group on ca	rbon
Secondary (2°) ald	cohols → 2	R groups or	carbon
Tertiary (3°) alcoh	ols →3Rg	roups on ca	rbon
Carbon atom to look at H R R R R-C-O-H R-C-O-H R-C-O	—— Э—н	3	H H-C-H
H H R 1º alcohol 2º alcohol 3º alcoh One R group Two R groups Three R gr		H H H H H H (b) Ethanol, CH ₂ CH ₂ OH	H H C C C O H H H CH ₁ (c) 2-Propanol, CH ₂ (CHOH (Bopropyl alcohol)

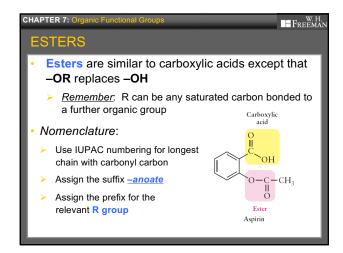


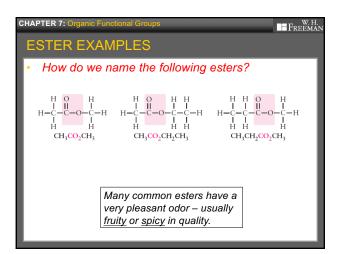


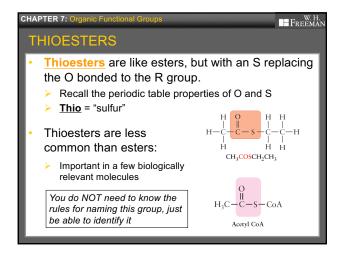

CHAPTER 7: Organic Functional Groups	W. H. Freeman
OUTLINE	
• 7.1 C-O Containing Functional Groups: Alcohols and Ethers	
• 7.2 C=O Containing Functional Groups	
• 7.4 P=O Containing Functional Groups	
• 7.3 C-N containing Functional Groups: Amines	

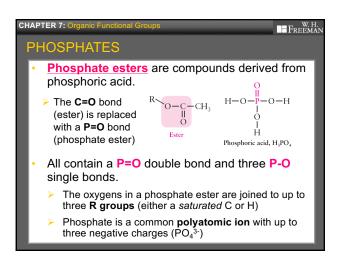


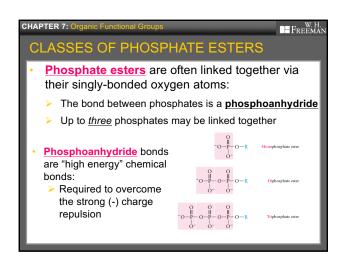


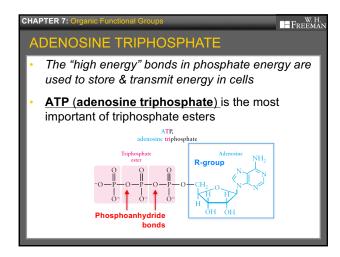


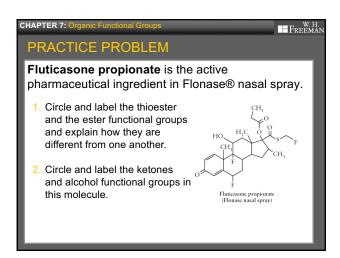


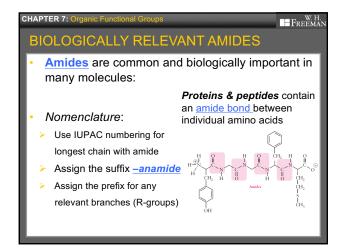

CHAPTER 7: Organic Functional Groups	■ Freema
IONIZATION OF CARBOXYLIC ACIDS	
 The <u>carboxylic acid</u> group is called an "a because it can "lose" a proton <u>in aqueous</u> 	
This forms a <u>carboxylate ion</u>	
The name of the ion ends in <u>-ate</u>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
RCOOH RCOO Carboxyla acid, Carboxylate ion, Proton ionic form	
A carboxylis an exampolyatom	ple of a
Acetic acid Acetate	

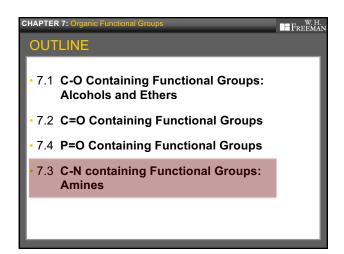

CHAPTER 7: Organic Functional Groups ■■FRI	W. H. EEMAN
CARBOXYLIC ACID DERIVATIVES	
Carboxylic acid derivatives resemble carboxylic acids in that they have a heteroatom connected the carbonyl group . Recontact the Carboxylic acid (a) (a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	to
We will consider three common derivatives:	
Carboxylic acid derivatives $ \begin{cases} R-C-O-R & R-C-S-R & R-C-N-H \text{ or } R \\ H \text{ or } R \\ Ester & Thioester & Amide \\ (b) & (c) & (d) \end{cases} $	

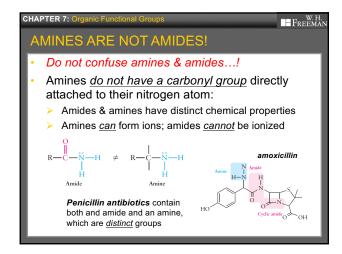


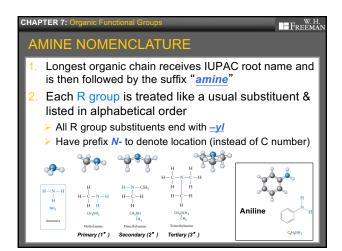



CHAI	PTER 7: Organic Functional Groups	Fre	W. H. EMAN
F	ATTY ACIDS AND FATS		
•	Fatty acids are long hydrocathe carboxylic acid group	arbon chains containing	
ı	O Carboxylic acid	O H H H H H H H H H H H H H H H H H H H	1
ŀ	Connection of 3 fatty acids to ester bonds produces a trig		
ı	$\begin{array}{c} H & O \\ H - C - O - C - (CH_2)_{12}CH_3 \\ \\ H - C - O - C - (CH_3)_{10}CH_3 \end{array}$		
L	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	yceride (Fat)	








CHAPTER 7: Organic Functional Groups W. H. FREEMAN		
AMIDES		
 Amides consist of carbon. 	of a nitrogen bond	led to a carbonyl
➤ The <u>carbonyl</u> and	d <u>nitrogen</u> behave as	s a <u>single unit</u> .
R—C—Й—H 	R—C—Ñ—H 	$ \begin{array}{c} 0\\ R \longrightarrow C \longrightarrow N \longrightarrow R'\\ \downarrow R\\ RCON(R)R' \end{array} $
Primary (1°)	Secondary (2°)	Tertiary (3°)
The nitrogen will additionally have up to two hydrogens or R groups attached.		
> Standard nomen	clature for number o	f R-groups applies

CHAPTER 7: Organic Functional Groups W. H. FREEMAN		
AMINES		
 <u>Amines</u> are groups containing nitrogen with three single bonds joined to <u>hydrogens</u> or <u>R groups</u>. 		
> Structurally related to ammonia		
> Geometry is <u>trigonal pyramidal</u>		
 Classification system depends on R-group type: The R-group carbons bonded to the N may be <u>saturated</u> or <u>aromatic</u> (<u>NOT a carbonyl</u>) 		
Amines $H^{W}\overset{\ddot{N}}{{{}{}{}{}{}{$		
Primary Secondary (2°) Tertiary (3°) (1°)		

CHAPTER 7: Organic Functional Group:	S W. H.
AMINES IN ORGANI	C RING STRUCTURES
 The R groups attached of a larger organic ring 	ed to an <u>amine</u> may be part ng structure
• Many biologically important cyclic amines H,C, Nicotine (Nicotine (Nicotaco))	oortant molecules contain
Cocaine (coca leaves)	Biologically active compounds containing amines that are derived from plants are called <i>alkaloids</i> .

l ——
l ———