
We are using React Native to build our application on Expo, and the app is compatible with iOS and Android devices.

We use an application layer protocol called MQTT (Message Queuing Telemetry Transport) to communicate between GNA, the cart-mounted device, and the mobile application. We are using Eclipse Mosquitto, an open-source implementation of the MQTT protocol, for our project. This open, lightweight messaging protocol works well with our hardware and software 

components. The MQTT protocol works by “publishing” and “subscribing” to “topics.” Thus, by scanning the QR code, the user can send their list to the same topic that GNA is subscribed to and sends the list to GNA for it to sort.

• Raspberry Pi 3 Model B

• HMTECH 10.1-inch Touchscreen Display

• Anker 20000mAh Portable Charger

• HB15CK Power Button

• 3D-Printed Mounting Bracket (PLA)

GNA (Grocery Navigation Assistant) is a senior 

project designed to solve the problem of 

inefficient and disorganized grocery shopping 

by developing a system that maps out the most 

efficient route around a grocery store. 

Our product locates the items in a customer’s 

grocery list in a store to minimize unnecessary 

wandering and backtracking. Customers can 

generate a grocery list on our mobile 

application, which can then be transferred into 

the GNA to be sorted and displayed. 

The interface also shows the layout image of 

the grocery store, with the location of the items 

highlighted for ease of navigation. The cart-

mounted system is easily detachable for 

recharging and maintenance.

Introduction

Hardware Components

Team 10 – GNA (Grocery Navigation Assistant)

Ezra Kim, Micah Lee, Anjana Sainju, Matthew Sulka 

Calvin University, Grand Rapids, Michigan 

2022-2023: Team 10

Data Transfer Process

Mobile 
Phone

User generates 
the grocery list 

on the app

Scan QR 
Code

Connects the 
app to the 

MQTT topic to 
send the list

MQTT 
Server

Receives data 
from the 

publisher and 
sends it to all 
subscribers

Raspberry 
Pi

Subscribed to 
the MQTT topic 

and receives 
the list, then 

sorts the list in 
an optimized 

order

Display

Show store 
layout, sorted 
grocery list, 

item details in 
the GUI

Graphical User Interface

The application was created using Python’s 

built-in ‘guizero’ library to keep it simple and 

lightweight. D&W had already made a handout 

with the store’s layout, as well as some common 

items and their corresponding locations. This 

information was used for the GUI and to build

the database of the items into a CSV file format.

The user will see the layout of the store, with 

the current item’s location highlighted in a 

green box. The estimated time is calculated

given the assumption that finding each item will 

take two minutes on average. Using the two 

buttons located in the bottom right corner, the 

user can navigate through their sorted list.

Figure 5: From left to right - Micah Lee (ME), Anjana Sainju (EE), Ezra Kim (EE), 

Matthew Sulka (EE)

The mounting mechanism design was inspired 

by the vise grip commonly seen throughout 

workshops, where a screw and a guide rod allow 

for clamping between two vertical surfaces. 

We applied silicon tape to reduce slippage along 

the handlebar and the main body of the shopping 

cart.

We designed the internal component housing 

with two primary pieces: the base and the back 

cover. The back cover is attached to the base 

with seven screws, where the base holds the 

internal components, keeping them safe from the 

outside environment.

Housing & Mounting 

Mechanism

Mobile Application & 

Data Transfer

We used React Native to build our application 

on Expo, and the app is compatible with iOS 

and Android devices. 

We also utilized an application layer protocol 

called MQTT (Message Queuing Telemetry 

Transport) to establish communication 

between the GNA and the mobile application. 

Eclipse Mosquitto, which is a lightweight 

open-source implementation of the MQTT 

protocol, works well with our hardware and 

software components. The MQTT protocol 

works by “publishing” and “subscribing” to 

“topics.” Thus, by scanning the QR code, the 

user can send their list to the same topic that 

the GNA is subscribed to and sends the list to 

the GNA for it to sort.

Figure 4: Fully assembled Solidworks model of the GNA device.

Figure 6: Final design of the GUI with the store layout, user’s sorted grocery list, and 

navigation buttons.

Figure 1: Internal component layout seen from the backside of the base housing. 

Figure 2: Flowchart describing the data transfer of the grocery list from a user’s personal mobile device to the GNA device. 

Figure 3: The mobile application UI for the user’s grocery list and the QR code reader.


	Slide 1

