Our team is working with Plastic Plate Inc, a chrome electroplating facility located in Grand Rapids, Michigan. Their electroplating process produces waste containing heavy metals that need to be treated before being sent to the municipal wastewater treatment plant. We aim to improve their copper (Cu^{2+}) treatment system.

Introduction

The current copper treatment system uses a steel wool process that is:

- Inefficient at filtering high concentrations of copper
- Incapable of recycling copper
- Labor intensive as it requires hourly monitoring of copper concentration, pH, and fluid level in the tank
- Uneconomical as it consumes and disposes 1600 pounds of steel wool every month

Project Description

- **Nanofiltration** is a type of membrane filtration that uses a porous membrane to filter out the undesired material from the solvent, mainly water. This is accomplished using pressure to force the smaller particles through the membrane to form the permeate, or the material that flows through the membrane. (Fig. 2)
- **Ozonation** is a chemical water treatment process based on the infusion of ozone into water. Ozone decomposes organics and inorganics, and increases coagulation effectiveness without altering pH of water. Moreover, it is capable of increasing biodegradability of EDTA. (Fig 3)

Solutions

Figure 1. Current Steel Wool Copper Removal Unit Flow Diagram

Figure 2. Nanofiltration Flow Diagram

Figure 3. Ozonation Flow Diagram

Team

Design Team of Chemical Engineers (from left to right):
- Kevin Lim
- Shiny Samuel
- Bo Ah Jung
- Haryana Thomas
- Nathan Schanck

Advisor: Jeremy VanAntwerp
Consultant: Jesse Gerspach